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ABSTRACT

Consider as € + 0‘, the solution
y{x) = {1 - exp(-x/¢€)} / {1 = exp(~1/e)}
of the following singularly~-perturbed linear two-point boundary-value problem
€ y''"(x) + y'(x) =0, y(0) =0, y(1) =1 .

When this problem is cast as a system of first—order differential equations,
using the substitution y4 =y and Yo = Y', one is led to consider the
problem

~ - .
R Y1("ﬂ [0 1)"1(") -0
0 €' ax yz(x) 0 -1 yz(x)
[1 0] y1(0) + [0 0] Y1(1) - [0]
0 0 y2(0) 1 o0o'ly. (1) R
- . Lz _

as € + 0 the solution of this first order system has the property that
y(0) blows up like e~ while yq{x) remains uniformly bounded on [0,1]).

This paper presents a simple constructive method of solving such singularly-
perturbed linear two-point boundary-value problems; a method which has been
generalized to analyze the solution of such problems by finite different

schemes based on Euler's method.

AMS (MOS) Subject Classifications: 34B27, 34E15, 65L10

Key Words: Ordinary Differential Equations, Boundary-Value Problem,
Singularly~-Perturbed, Green's Function, Constructive Methods,
A Priori Bounds, Difference Schemes.
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SIGNIFICANCE AND EXPLANATION

This paper presents a simple constructive proof of the existence of
solutions to a class of singqularly-perturbed linear two-point boundary-value
problems. Such problems arise when detailed models of physical phenomena
involve effects that occur on markedly different temporal or spatial scales,
the (singqularly) small parameter measuring the disparity between the scales.
This simple constructive proof, through slight mgdification, also allows one

to prove the existence of solutions of a class of difference schemes used to

approximate the solution of the continuous problem.

~

A

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




ANALYSIS OF A SINGULARLY~PERTURBED LINEAR
TWO-POINT BOUNDARY-VALUE PROBLEM

Warren E. Ferguson, Jr.
1. Introduction
When a high-order singularly-perturbed linear two-point boundary-value problem is cast
as a first-order system of differential equations, it is usually the case that the solution
of this first order system does not remain uniformly bounded as the small parameter tends

to zero. This leads ua to consider, as € * 0+, a differential equation on [0,1] of the

form
€I y1(x) A11(x) A12(x) cA13(x) y1(x) f1(x)
1 = yz(x) - A21(x) Azz(x) Aza(x) yz(x) - tz(x)
eI_ y3(xj eA31(x) A32(x) A33(x) .?3(x) f3(x)

subject to appropriate boundary conditions. Here it is assumed that the real parts of the
eigenvalues of Ayq(x) are negative while those of A33(x) are positive. 1In this paper
reasonahle general conditions are placed on the boundary condition which ensure that the

solution y of this differential equation satisfies the following:

Requirement 1.1: For all sufficiently small positive €

ey‘(o)
Yim, y2(0)
e+0

ey3(1)

exists and is finite.

Problems of this type have been considered by other authors (6,11]. What
distinguishes the analysis presented in this paper is the fact that a straightforward

analog can also be used to analyze the stability and consistency properties of difference
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schemes used to solve this problem.

In section 2 we precisely define the class of singularly-perturbed linear two-point
boundary-value problems to be studied. 1In sections 3 and 4 a simple constructive technique
is presented which allows one to characterize, in a reasonable general manner, when such
singularly-perturbed boundary-value problems admit a solution satisfying Requirement 1.1.

In section 5 applications of the results presented in sections 3 and 4 are described.




2. Preliminaries
Consider the following two boundary-value problems BV(v)

only in the boundary conditions imposed on their solutions:

ly = £ and B(v)y = g(“) .
where
e1 4 ¥,(x) A11(x) Ay (x)
(Ly) (x) = b o1 3 [V - | A0 AL
ya(x{ €A31(x) A32(x)
and

8™y = 8V )y(0) + a{Vly(n)

for v = G, S which differ

eA13(x) y1(x)
A23(x) yz(x)
A33(X)) Y3(x)

The unique solvability of the general problem BV(G) will he related to the unique

solvability of the special problem BV(S) under the following assumptions.

Assumptions 2.1: For all sufficiently small positive ¢€:

0) n=ng,+n,y +n,,

1} the components yi(x), fi(x), and g‘“) of the n-vectors

i

(v)

y(x), f(x), and g respectively are ni—vectors,

2) the order ny by nj matrices Aij(x) = Aij(xye) depend

smoothly on x and ¢,

3) the vector f(x) = f(x;€) depends smoothly on x and €,

4) the order n matrices BéG) = BéG)(e), B%G) = B%G)e

and order n vectors g(v) = q(v)(e), depend amoothly on ¢,

o -
1

5) Bgs) = [ I and B(S) = 0 are order n matrices,
0

€T

6) for some positive constant u independent of € the eigenvalues of

A11(x) have real part less than =i while the eigenvalues of Azz(x)

have real part greater than +u.

By smooth dependence on x and/or € we mean that all possible derivatives with respect

to x and/or € exist and are continuous.

-3-




When one formally sets € = 0 the differential equation Ly = £ reduces to the

following familiar reduced system of algebraic-differential equations
-1
Y1(x) A11(x)[A12(x)y2(X) + f’(x)] ’

a « L]
ax yz(x) - Azz(x)yz(x) + fz(x) . and

-1
Y3(x) = -Aas(x)lhaz(x)yz(X) + fs(x)]

where

~ -

- 1 _ -1
Azz(x) = Azz(x) - A21(x)A11(x)A12(x) A23(x)A33(x)A32(x) . and

» -1 -1
fz(x) fz(x) - A21(x)A11(x)f1(x) - A23(x)k33(x)f3(X) .

When assumptions 2.1 hold, standard results in singular perturbation theory suggest that
as € » 0" the solution of BV(S) approximately satisfies this reduced system of
algebraic-differential equations in each fixed open subinterval of (0,1].

The proof of the unique solvability of BV(S) begins by casting the BV(S) as an

equivalent operator equation acting on an appropriate Banach space. To cast BV(S) into
an equivalent operator equation we will use the fundamental solution matrices Y1(x,s),

Yz(x,s), and Ya(x,s) defined as follows:

9
€ r Y1(x,s) = A11(x)Y1(x,s) ¢ Y1(s,s) =1 ,

*

Yz(x,s) = Azz(x)Yz(x,s) ’ Yz(s,s) =1 , and

™
§1q; :1@

YJ(x’B) = A33(x)Y3(x,s) ’ Ya(s,s) =1 .

Assumptions 2.1 and well-known results for initial-value problems guarantee the existence
of these fundamental solution matrices.

The results presented in this paper depend primarily on three fundamental theorems.
The first theorem relates the unique solvability of BV(G) to the unique solvability of

BV(S).




Theorem 2.2: Let B®V(S) be uniquely solvahble. Define ¥{5) to he the fundamental
golution matrix of BV(S), that is
Ly{S) = o ana B(S)y(8) w |

Then BV(G) is uniquely solvable if and only if the matrix B(G)Y(S) is nonsingqular.

This theorem, whose proof can be found in (8,9], was used by Xeller to show that a
difference scheme iz stable and consistent for a uniquely solvable boundary-value problem
if and only if it is stable and consistent for the related initial-value problem. The
proof of this theorem for difference equations rest on Kron's method of tearing [12]; the
boundary conditions of the boundary-value problem are torn from the matrix describing the
difference scheme and replaced by the boundary conditions of the related initial-value
problem. This idea of replacing one set of houndary conditions by another underlies the
proof that B8V(G) is uniguely solvable,

The second theorem, whose proof can be found in [4), orovides needed estimates on the

size of the fundamental solution matrices Y, and Y3.

Theorem 2.3: There exist posgitive constants X and 1, independent of €, such that

e-X(x-s)/c

for 0 < 8 and
-

A
x
A
-
~

ly,(x,8)] ¢ x

e—Als-x)/e

|v3(x.s)I ¢ X for 0 ¢ x ¢

@
[
-

for all sufficiently small positive €.

In this theorem the norm |¢| used is any fixed n-vector norm, say the infinity
vector norm. WNote that the condition that € be sufficiently small is important [1,2];
for unleas € is sufficiently small |Y1(x,s)| need not decay with increasing (x-s)
aven though the eigenvalues of A4 4(x) have uniformly neqative real part.

The third theorem, whose proof can be found in (7], states that operators in a Banach
space sufficiently near the identity are invertible. The Banach space C“ used in this
theorem consists of the space of n-vector valued functions of x, continuous on [0,1],
endowed with the norm I+l defined by:

max I£(x)! .
10,1)

Te(x)N




Theorem 2.4: let B8 be an operator on the Banach space Cn which admits the bound

1Bl ¢ 1. Then I-B is invertible with

w N N+1
r-m™' = F et, ana 1w - § oshi ¢ %E{ TR
2=0 2=0

This theorem will be used to obtain a generalized power series expansion of the solution of

both BV(S) and BV(G).




3. Solution of the Special Problem

Let us now show that, for all sufficiently small positive €, the speical problem

3V(S) is uniquely solvable. As stated in section 2, the first step is to cast BV{(S) as

an equivalent operator equation acting on the Banach space Cn.

Lemma 3.1: vy(x) is a solution of BV(S) if and only if it is a solution of the operator

equation
Ly = F
where
I -K1A12 ~€K1A13
*
L= -K2A21 I—KZ(AZZ-AZZ) -K2A23 , and
“€K3hqy “K3P3s T
-1, . (s) k
€ Y1( ,0)91 + K1f1
= . (s)
F = Yz( ,O)q2 + Kzfz
-1, ., (s)
€Y, (0, Ngy” + K E,
with
(K1w) (x) = e”? fg Y1(x.5)w(s) i,
- x
(sz) (x) = 0 Y2(x,s)w(s) ds , and
= o~1 (x
(Xw) (x) = ¢ f1 Y, (x,5)w(s) ds .
Proof: Consider the initial-value problem

L wix) - clowx) = h(x) and w(0) =n ,

whose fundamental solution matrix Y(x,s) satisfies the matrix initial-value problem

%; Y(x,s) - C{x)Y(x,3) = 0 and Y(s,s) =1 .

The variation of parameters formula states that the solution of this initial-value problem

admits the repregentation

-7-
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w(x) = ¥Y(x,0)n + f; Y{x,s)h(s) ds .

Suppose then that y(x) 1s a solution of BV(S). Applying the variation of parameters
formula to each component of the differential equation Ly = f, and the boundary-
conditions specified by B(s)y = g(S), shows that y(x) is also a solution of the
operator equation Ly = F. Conversely, suppose that y(x) is a solution of the operator
equation Ly = P. Then y(x) clearly satisfies the boundary conditions B(s)y - g(S) and
differentiation of each component of the operator equation shows that y(x) is also a
golution of Ly = f.
o

To solve the integral equation Ly = F note that it is possible to compute, for all

sufficiently small positive €, an approximate inverse of L.

Lemma 3.2: For all sufficiently small positive €

JOL=I-€H

where
1 KR
3, =1 o ) + K; (KyAy, T KA 01
RV
KyR12KoR3K R4 KhgoNy  K(R KA Kt TIA,
M= KaR23R3Ray Ny KA KeRy3 + and
P S e L PR S P K3A3%R51%42 3

- =1 o a*
Ny = € Ky[Rgy + AyyKyAgp + Ay3KjAzy = Ay,]

are operators on Cn which are bounded independently of €.

Proof: It is a simple matter to multiply J, by L and verify the product is indeed

I - €M. To show that J; and M are bounded independently of ¢, for all sufficiently
small positive €, one uses Theorem 2.3. For example, to prove that N, is bounded first
change the order of integration in the double integrals yielding (N,w)(x), substitute for

the fundamental solution matrices Y, and Y, the expressions




-1 ) -1 3
Y,(x,s) = ¢ A11(x) % Y1(x,s), and Ya(x,s) =¢ A33(x) % Yj(x,s) ,

then perform an integration by parts and recall the definition of Agz(x) hefore applying
Theorem 2.3,
a

Using Theorem 2.4 we can now obtain, for all sufficiently small positive €, a

convergent generalized power series expansion for L'1, the fundamental solution matrix

V(S), and the solution.

Theorem 3.4: For all sufficiently small positive ¢, ™' exists and admits the following

generalized power series expansion:
@
- 3
V=) em)s

2=0 0

Corollary 3.5: For all sufficiently small vositive ¢, Y(S) exists and admits the
following generalized power series expansion:
ey (+,0)
® L 1
¥ o [ Y (em) 13, Y, (+,0) .

=0 -1
€ Y3(~,1)

Corollary 3.6: For all sufficiently small positive €, BV(S) has a unigue solution vy

which admits the following generalized power series expansion:

-

S I £3 ]
€ Y1( ,ﬂ)q1 + ¥1f1

v =[5 emYs YZ(',O)g;S’ + k£ .

() & . ¢

-1

As shown by Theorem 2.4, when the above jinfinite sums are truncated after the term
. . . -1 (s) N +
92=N the resulting approximations to L ', Y , and y are Q(e") accurate as & + 0 .
When the solution y of Ly = f satisfies Requirement 1.1 the following Corollary

shows that yz(x) remains bounded on [0,1] as ¢ + 0+. A more detailed calculation,




such as that provided by the method of matched asymptotic expansions (3], is needed to show
that when the golution y of [y = f satisfies Requirement 1.1 both y1(x) and Y3(;,

remain bounded on each fixed open subinterval of [0,1] as ¢ *» o*.

Corollary 3.7: For all sufficiently small positive €, BV(S) has a unique solution vy
which admits the following a priori hounds:
)
byl <X { \,1(0)l + ly2(0)l + e|y3(1)l FAEL S NE N S E M)},

ty,l < X {e|v1(0)| + |y2(0)| + s|v3(1)| +AEN +0E0 4+ 0EM} , and

A

y,0 <K {€|y1(0)| + |v2(0)| + |y3(1)| FREN S REN +HEM}

[N

Here the norm Ifl‘ of a function f£(x) is defined as

o
ver, = folf(x)| ax .

-10-
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4. Solution of the General Problem
By combining Theorem 2.2 and Corollary 3.5 one arrives at a explicit method for

determining the unique solvability of BV(G). Recall that by Theorem 2.2, BV(G) is

uniquely solvabile if and only if B(G)Y(S) is nonsingular. To arrive at reasonably

general conditions under which the solution of BV(G) exists and satisfies Requirement 1.1

let us follow Harris [6] and introduce the following definition.

Definition 4.1: BV(G) is said to be regular if and only if it admits Assumptions 2.1 and

the matrix

R= 11m+ B(G)Y(s)

€+0
exists and is nonsingular.

Note that the smoothness requirement of Assumptions 2.1 allow us to compute R using

the equivalent formula

.
ey (+,0)

R= lim B(G)(Iﬂ:M)J Y, (*,0) .
+ 0 2
€+0 !
e (o, 1)
3 ’

Theorem 4.2: If BV(G) is regqular then for all sufficiently small positive .¢ it is

uniquely solvable and its solution y satisfies Requirement 1.1.
Proof: By a continuity argument the nonsinqularity of R and the assumed smoothness

properties of BV(G) guarantee that B(G)Y(s) is nonsingular for all sufficiently small

positive €. Therefore, by Theorem 2.2, BRV(G) is uniquely solvable for all sufficiently

small positive €. To verify that the solution of BV(G) satisfies Reguirement 1.1 let us

observe that it admits the representation
. -fe-1v1(0,-){ey1(0)} + K1f1]
13
y= [T emla | v, 00y + x|

£=0 -
€ Yt ey, (D) + K £,

~11-




The smoothness requirements in Assumptions 2.1 and the regularity of BV(G) assure us that

the limit
A (G)_(S) -1 _(G) olG)f w 3 K‘f“l
lm | y,(0)f = lim {B Y g =B ] (em ]Jo K, }
e+0 €+0 =0 :
€Y3(1) x3f3 J

exists and is finite.

[s]

-12-




5. Conclusions

Similar techiques can be used to establish the stability and consistency properties of
finite difference approximations to BV(v) for v = G, S based on Ruler's method. This
finite differenca scheme [3,10], with step size h, uses the backward Euler acheme to
approximate the differential equation for Y9 the box scheme of Keller (centered Euler)
to approximate the differential equation for Yoo and the forward Fuler scheme to
approximate the differential equation for Y3e This scheme is Q(hz) accurate as h + 0*,
uniformly in €, in each fixed open subinterval of [(0,1].

The a priori estimates of Corollary 3.7 can also be used, as in [3], to show that the
method of matched asymptotic expansions does indeed yield an asymptotically correct
estimate of the solution of BV(G) as € + 0%. These a priori estimates can also be used
to prave the existence of solutions of a class of nonlinear singularly perturbed boundary-
value problems when the method of matched asymptotic expansions is coupled with the Newton-
Xantorovich theorem.

More general boundary-value problems of the form
1 ]E_ [21(1:)] ) Cyq(x) c12(x)][z1(x)] } [f’(x)] Bs
[ e1f I [z,(x) [021():) C,, (x) ||z, (x) e, 0f 7 9
can also be analyzed by this technique under the restriction that the eigenvalues of
czz(x) have real parts whose absolute value is bounded away from zero. For such problems
a preliminary block diagonalization of czz(x) must be performed before the results of
sections 3 and 4 can be applied. This block diagonalization of C,,(x) involves the

existence of a smooth nonsingular matrix U(x) with the property that

(e

sz(x)U(x) = U(x)

221%)
c;z(x)J
where the real parts of the eigenvalues of ng(x) (ng(x)} are negative (positive). The
existence of such a similarity transformation is established in [3,5].
These results summarize part of a thesis [3) written under the direction of Dr. H. B.

Keller. I would like to thank Dr. Xeller for suggesting this problem to me and for his

supervision of my studies at the California Institute of Technology.

«13=
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As € + 0% the solution of this first order system has the property that

y,(0) blows up like e”? while y4(x) remains uniformly bounded on {o,11.

This paper presents a simple constructive method of solving such singularly-
perturbed linear two-point boundarv-value problems; a method which has been
generalized to analyze the solution of such problems by finite different
schemes based on Euler's method.







